HW Four, MTH 418, Spring 2016

Ayman Badawi

QUESTION 1. (i) Let $n \geq 4$ Find $\kappa\left(C_{n}\right)$ and $\kappa^{\prime}\left(C_{n}\right)$.
(ii) Let H be a 2-regular connected graph with n vertices where $n \geq 3$. In at most 6 lines, convince me that $H=C_{n}$.
(iii) Let H be a 4-regular connected graph and assume that $\kappa(H)=4$. In one line, find $\kappa^{\prime}(H)$? and verify your answer.
(iv) Let $H=Q_{k}$ where $k \geq 3$. What is $\kappa(H)$ and $\kappa^{\prime}(H)$? Convince me that your claim is correct, in few lines, by showing me how you choose your cut-edge set and cut-vertex set for the graphs K_{3}, K_{4}
(v) Let H be a connected graph such that $\kappa(H)=21$. Convince me that $\operatorname{girth}(H)<\infty$.
(vi) Give me an example of an Eulerian graph such that $\kappa^{\prime}(H)=6$.
(vii) Give me an example of an Eulerian graph that is not an Eulerian circuit but $\kappa(H)=3$.
(viii) Let H and D be Hamiltonian graphs such that each is of order 3. Convince me that $H \times D$ is Hamiltonian by constructing a Hamiltonian cycle of $H \times D$. Is there anything special about 3?
(ix) Let H be an 8-regular connected graph of order n where n is odd. Find $\chi^{\prime}(H)$. Convince me that your claim is correct.
(x) Give me an example of complete bipartite graph that has a maximum matching set but it has no perfect matching set.
(xi) Give me an example of complete bipartite graph that has perfect matching set.
(xii) Construct a perfect matching set for Q_{3}.

Due date: Sunday April 24 ,2016 Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

